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Abstract. We show how the form-factors approach can be used to compute correlators of
operators with non-trivial anomalous dimension in quantum impurity problems. This is done by
a series of regularizations that cure completely the infrared divergencies, without spoiling the
exactedness of the method. As an application, we compute forg 6 1

2 the ‘Friedel oscillations’
of charge density induced by a single impurity in a one-dimensional Luttinger liquid of spinless
electrons.

The general problem of a Luttinger liquid interacting with an impurity—that may have
internal degrees of freedom—has attracted constant attention. The first reason is the
wealth of physical applications: they include the anisotropic Kondo model, the double
well problem [1] and the washboard potential problem of dissipative quantum mechanics,
scattering through an impurity in quantum wires [2], and tunnelling through a point contact
in the fractional quantum Hall effect [3]. Another reason is that this general problem is
integrable, and therefore the possibility of obtaining exact solutions exists. Until recently,
however, such solutions had been restricted to thermodynamic properties. While of crucial
experimental interest, correlation functions and related transport and dynamical properties
had remained inaccessible analytically. Numerical simulations were quite difficult, and not
always conclusive.

Recently, major progress has been made. Based on a new basis of massless
quasiparticles suggested by integrability, together with a generalization of the Landauer
Büttiker approach, DC properties have been exactly computed, in remarkable agreement with
experimental results [4]. Using the form-factors approach [5, 6], the dynamical properties
of currents have also been obtained exactly [7], or, more precisely, in closed forms that
have an arbitrary accuracy all the way from the ultraviolet (UV) to the infrared (IR) fixed
points.

The method used in [7] worked only for currents, i.e. for operators with no anomalous
dimension. This was a major drawback, since many physical properties are described by
more complicated operators, for which the expressions of [7] are very strongly IR divergent.
We show in this letter that this problem can be cured by a series of elementary manipulations
that do not spoil the exactedness of the approach. As an application, we determine the
2kF part of the charge density profile in a one-dimensional Luttinger liquid away from an
impurity, a problem which has attracted a lot of interest recently [8, 9].

We start with the bosonized form of the model. The Hamiltonian takes the form

H =
∫ ∞
−∞

dx

[
8πg52+ 1

8πg
(∂xφ)

2

]
+ λ cosφ(0) (1)
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where we have setvF = g. Then for the Friedel oscillations, the charge density operator is
just

ρ(x) = ρ0+ 2∂xφ + kF

π
cos[2kFx + φ(x)]. (2)

with ρ0 = kF/π is the background charge. We decompose this system into even and odd
bases [10] by decomposingφ = φL + φR and setting

ϕe(x + t) = 1√
2

[φL(x, t)+ φR(−x, t)]

ϕo(x + t) = 1√
2

[φL(x, t)− φR(−x, t)] . (3)

Observe that these two field are left movers. We now fold the system by setting

φe
L =
√

2ϕe(x + t) x < 0 φe
R =
√

2ϕe(−x + t) x < 0

φo
L =
√

2ϕe(x + t) x < 0 φo
R = −

√
2ϕo(−x + t) x < 0 (4)

and introduce new fieldsφe,o = φe,o
L + φe,o

R . The density oscillations now read

〈ρ(x)− ρ0〉
ρ0

= cos(2kFx + ηF)

〈
cos

φo(x)

2

〉 〈
cos

φe(x)

2

〉
(5)

with ηF the additional phase shift coming from the unitary transformation to eliminate the
forward scattering term.φo is the odd field with Dirichlet boundary conditions at the origin
φo(0) = 0 leading to [11]〈

cos
φo

2

〉
∝
(

1

x

)g/2
(6)

and theφe part is computed with the Hamiltonian

H e = 1

2

∫ 0

−∞
dx

[
8πg5e2+ 1

8πg
(∂xφ

e)2
]
+ λ cos

φe(0)

2
. (7)

On general grounds, we expect the scaling form〈
cos

φo

2

〉
∝
(

1

x

)g/2
F(λx1−g) (8)

whereF is a scaling function to be determined. Note that even the smallx behaviour of
this function is not known in general.

Our approach is based on the fact that both systems are integrable. By considering
the free boson as a limit of the sine–Gordon model [12], we describe it using a basis
of quasiparticle states, the quasiparticles being massless solitons/antisolitons and breathers,
with factorized scattering. The boundary interaction is then described by a scattering matrix,
which is elastic [13, 14].

To compute the correlation functions, it is convenient to represent the boundary
interaction through a boundary state [13]|B〉:

|B〉 = exp

[∑
ε1,ε2

∫ ∞
−∞

dθ

2π
Z∗(L)ε1

(θ)Z∗(R)ε2
(θ)Kε1ε2(θB − θ)

]
(9)

whereεi denote the type of particles (solitons/antisolitons or breathers) and the superscript
denotes whether they are left or right movers since they are massless particles. HereθB is
a scale related toλ encoding the boundary interaction,λ → 0 corresponds toθB → −∞
andλ→∞ to θB →∞. Kεε′ is related to the reflection matrices [13]. As usual we have
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used rapidity variablesθ to encode energy and momentum. For solitons and antisolitons
for instance,e = ±p = µ eθ , µ an arbitrary energy scale.

The one point function of interest then reads〈0| cos1
2φ|B〉. To use (9), we first need the

matrix elements of the operator cos1
2φ in the quasiparticle basis: these follow easily from

the massive sine–Gordon form factors [5]. Unfortunately, as discussed briefly in [7], the
resulting integrals are all IR divergent! This was not the case for the current operator, whose
form factor has the naive engineering dimension of energy, leading to convergent integrals.
Some sort of regularization is needed, and the correlations of cos1

2φ with a boundary have
so far remained inaccessible. Our purpose is to show how to cure this problem.

To explain our strategy, we first consider the caseg = 1/2. Here, the Friedel oscillations
are simply [10] related to the spin-one point function in an Ising model with boundary
magnetic field. By using the same approach as that outlined before, one finds the following
form-factors expansion

〈σ(x)〉 =
∞∑
n=0

1

n!

∫ ∞
−∞

n∏
i=1

{
dθi
2π

tanh
θB − θi

2
e−2µxeθi

}∏
i<j

(
tanh

θi − θj
2

)2

. (10)

The integrals are all divergent at low energies, whenθi →−∞ and the integrand tends to a
constant. Let us then introduce an IR cut-off (we choseθ > θmin and set3 ≡ eθmin) and take
the log of the previous expressions (a similar method has been used in [5] to study the UV
limit of massive correlators, see also [15, 16]). Ordering this log by increasing number of
integrations, one can show that each term diverges as ln3. Moreover, since the divergence
occurs at very low energy, where the tanh goes to unity, the amplitudes of these ln3 do not
depend onθB (for θB 6= −∞), i.e. on the boundary coupling. It is then easy to get rid of
the cut-off: we simply substract the log of the IR spin function, i.e. we substract the same
formal expression withθB = ∞. The first two terms of the resulting expression read

ln
〈σ(x)〉TB
〈σ(x)〉IR =

∫ ∞
3

du

2πu
e−2ux

(
TB − u
TB + u − 1

)
+ 1

2

∫ ∞
3

2∏
i=1

dui
2πui

e−2µuix

( 2∏
i=1

TB − ui
TB + ui − 1

)

×
[(

u1− u2

u1+ u2

)2

− 1

]
+ · · · (11)

where we have setµ = 1, ui = eθi , TB = eθB ∝ λ1/(1−g).
Clearly, the integrals are now convergent at low energies, and we can send3 to

zero. Since the IR value of the one point function is easily determined by other means,
〈σ(x)〉IR ∝ x−1/8 [17], we can now obtain〈σ(x)〉TB from (11). Hence the procedure
involves adoubleregularization. Of course, there remains an infinity of terms to sum over.
However, as in the case of current operators, the convergence of the form-factors expansion
is very quick, and the first few terms are sufficient to obtain excellent accuracy all the way
from UV to IR. To illustrate this more precisely, we recall that forg = 1/2 (11) can be
resummed in closed form, giving rise to

Rexact= 〈σ(x)〉TB〈σ(x)〉IR =
1√
π

√
2xTBexTBK0(xTB). (12)

By re-exponentiating the two first terms in (11), one obtains a ratio differing from (12) by
at most 1/100 for xTB ∈ [0,∞) (see figure 1).

By re-exponentiating the first three terms, accuracy is improved to more than 1/1000.
Clearly, the form-factors approach thus provides analytical expressions that can be
considered as exact for most reasonable purposes.
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Figure 1. Accuracy of finiteTB over the IR part of the envelope ofρ(x) for g = 1/2.

It is fair to mention, however, that, at any given order in (11) the exponent controlling
the x → 0 behaviour is not exactly reproduced, as can be seen on a log–log plot. For
instance, the first term is immediately found to produce a behaviourR(x) ∝ x1/π , to be
compared with the resultRexact(x) ∝ x1/2 ln x. The comparison of the exact result (12)
and of (11) show that the form-factors expression has, term by term, the correct asymptotic
expansion, i.e. the IR expansion in powers of 1/xTB . Adding terms with more form factors
simply gives a more accurate determination of the coefficients. This is to be compared
with the results of [7], for example, the frequency-dependent conductance, where the form-
factors expression has the correct functional dependence both in the UV and in the IR. This
is not to say that our method is inefficient in the UV, because we know, at least formally,
all the terms. In fact, we will show in what follows how (11) can always be resummed in
the UV, and that the exponent can also be exactly obtained from our approach.

The regularization is the same for other values ofg. Here, we discussg = 1/t with t an
integer. For these values, the scattering is diagonal and the form factors are rather simple.
To obtain them, we take the massless limit of the results in [5] and impose that half of the
quasiparticles become right movers and half become left movers, since the boundary state
always involve pairs of right and left moving particles. It is in fact easier to take that limit
if we change basis from the solitons and antisolitons to(1/

√
2)(|S〉 ± |A〉). In that case,

the boundary scattering matrix becomes diagonal and the isotopic indices always come in
pairs. The reflection matrices in this new basis are given by

K−(θ) = −ei(π/4)(2−t) tanh

(
(t − 1)θ

2
+ i
π(t − 2)

4

)
R

(
i
π

2
− θ

)
K+(θ) = ei(π/4)(2−t)R

(
i
π

2
− θ

)
(13)

with

R(θ) = exp

(
i
∫ ∞
−∞

dy

2y

sin(2(t − 1)yθ/π) sinh((t − 2)y)

sinh(2y) cosh((t − 1)y)

)
. (14)
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The breathers reflection matrices are given in [18].
The caseg = 1/2 has already been worked out, so let us concentrate ong = 1/3 as an

example. Then, in addition to the soliton and antisoliton, there is also one breather. The
first contribution to the one point function comes from the two-breather form factor, with
one right moving and one left moving breather. It is given by a constant,

f (θ, θ)LR
11 = c1 (15)

and this obviously leads to IR divergences. Other contributions come from 2n-breather
form factors, and 4n-soliton form factors. The whole expression can be controlled, as for
g = 1/2, by taking the log and factoring out the IR part. Settingc(x) = cos1

2φ(x), we
organize the sum as follows:

ln
〈c(x)〉TB
〈c(x)〉IR = lnR(2) + lnR(4) + · · · (16)

with the subscript denoting the number of intermediate excitations.
Then, using the explicit expressions forg = 1/3 we find

lnR(2) = 2c1 e2
√

2TBxEi(−2
√

2TBx) (17)

where Ei is the standard exponential integral. The next term lnR(4) is a bit bulky to be
written here, but is very easy to obtain—similar expressions have been explicitly given in
[7]. This is all that is needed for an accuracy better than 1%. In figure 2 we present the
results of the ratio atg = 1/2, 1/3, 1/4 for the Friedel oscillations. It should be noted that
this ratio is just the pinning function of [8] and our results agree well qualitatively with the
results found there.

As mentioned before, the deep UV behaviour is a little more difficult to obtain: the
accuracy is good because the ratio goes to zero anyway, but the numerical evaluation of the
power law is not very accurate with the number of terms we consider. Fortunately, the full
form-factors expansion allows the analytic determination of this exponent. First, observe
for instance that in (11) the integrals converge for allTB 6= 0, but strictly atTB = 0 they
do not. To find the dependence of〈c(x)〉 as TB → 0, we will consider the logarithm of
another ratio, ln(〈c(x)〉TB /〈c(x ′)〉TB ), wherex andx ′ are two arbitrary coordinates. For this
ratio, even atTB = 0, the integrals are convergent. ButTB = 0 is the UV fixed point,
with Neumann boundary conditions. While the one point function〈c(x)〉UV vanishes, the
ratio of two such one point functions is well defined, and can be computed by adding an
IR cut-off (a finite system). One finds that it goes as(x/x ′)g/2. By regularity, asTB → 0,
the same is true for the ratio close toTB = 0, and thus one has

〈c(x)〉 ∝ (xTB)g/2 x(TB)→ 0. (18)

This shows that the universal scaling function in (8) behaves asF(y) ∝ yg/(1−g) for g < 1/2.
This exponent can actually be obtained by perturbation theory. Indeed, the first term in the
perturbative expansion of〈c(x)〉 is

λxg/2
∫ ∞
−∞

dy

(x2+ y2)g
. (19)

For g < 1/2, this integral diverges in the IR. To regulate it, we need to put a new cut-off:
since there is no other length scale in the problem, this can be nothing but 1/TB . Changing
variables, the leading behaviour isxg/2T gB ∝ xg/2λg/1−g, in agreement with the previous
discussion.

The leading behaviour was studied numerically in [8]; the resulting estimates of the
exponent (calledδg there) are considerably smaller than the exact result (δg = g) following
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from the foregoing discussion: presumably, the short distance behaviour is more difficult
to control numerically than the error bars of [8] indicate.
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Figure 2. Ratio of finiteTB over the IR part of the envelope ofρ(x).

The functionF(y) behaves asy ln y for g = 1/2. Forg > 1/2, its behaviour is simply
F(y) ∝ y, as can be easily shown since the perturbative approach is now convergent.

The method presented here is very successful in obtaining analytical results for
g 6 1/2—although we have limited ourselves tog = 1/t with t an integer, all values
of g < 1/2 are accessible, but computations are more complicated since the bulk scattering
is non-diagonal. The method should be generalizable to other problems, in particular the
determination of the screening cloud in the anisotropic Kondo model [19], as will be reported
elsewhere. The regiong > 1/2 presents additional difficulties, unresolved for the moment—
in particular, the massless limit of the form factors does not seem to be meaningful. Of
course the caseg = 1 can be solved by fermionization. In our approach, this point is
non-trivial because of the folding. This folding, however, is necessary for any valueg 6= 1:
except atg = 1, the problem on the whole line would not be integrable otherwise.

We thank R Egger and F Smirnov for useful discusions. This work was supported by the
Packard Foundation, the NSF (through the National Investigator Program) and the DOE.
FL was also partially supported by a Canadian NSERC postdoctoral fellowship.
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